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In this section we introduce the notion of a proof and describe methods 

for constructing proofs. 

II. Introduction to Proofs

The methods of proof discussed in this chapter are important not only 

because they are used to prove mathematical theorems, but also for their 

many applications to computer science. These applications include 

verifying that computer programs are correct,

A proof can use the hypotheses of the theorem, if any, axioms assumed 

to be true, and previously proven theorems. Using these ingredients and 

rules of inference, the final step of the proof establishes the truth of the 

statement being proved.

A proof is a valid argument that establishes the truth of a theorem
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Understanding How Theorems Are Stated

Many theorems assert that a property holds for all elements in a domain, 

such as the integers or the real numbers. Although the precise statement of 

such theorems needs to include a universal quantifier, the standard 

convention in mathematics is to omit it.  For example:

“If x > y, where x and y are positive real numbers, then x2 > y2 ”

really means

“For all positive real numbers x and y, if x > y, then x2 > y2 .”

when theorems of this type are proved, the first step of the proof usually 

involves selecting a general element of the domain. Subsequent steps show 

that this element has the property in question. Finally, universal generalization 

implies that the theorem holds for all members of the domain.
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• Methods of Proving Theorems 

To prove a theorem of the form ∀x(P(x) → Q(x)), our goal is to show 

that P(c) → Q(c) is true, where c is an arbitrary element of the 

domain, and then apply universal generalization.

Recall that p → q is true unless p is true but q is false. 

Note that

to prove the statement p → q, 

we need only show that:

q is true if p is true. 

Proving Conditional Statements: p → q

• If we know q is true, then  p → q   is true as well.  (Trivial Proof)   

• If we know p is false then  p → q   is true as well . Vacuous Proof

“If I am both rich and poor then 2 + 2 = 5.” 

“If it is raining  then 1=1.”
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A direct proof of a conditional statement p → q is constructed when 

the first step is the assumption that p is true; subsequent steps are 

constructed using rules of inference, with the final step showing that q

must also be true. 

1. Direct Proofs

we assume that p is true and use axioms, definitions, and previously

proven theorems, together with rules of inference, to show that q must 

also be true.

Example

Solution

Give a direct proof of the theorem

“If n is an odd integer, then 𝑛2 is odd.”

Note that this theorem states ∀n ( P (n) → Q(n)), where P(n) is “n 

is an odd integer”  and Q(n) is “𝑛2 is odd.” 

we assume that the hypothesis of this conditional statement is 

true, namely, we assume that n is odd. We want to show that 

𝑛2 is also odd. 
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By the definition of an odd integer, it follows that n = 2k + 1, where k is 

some integer. We want to show that 𝑛2 is also odd. We can square both 

sides of the equation n = 2k + 1, we find that

𝑛2 = (2k + 1)2 = 4 𝑘2 + 4k + 1 = 2(2 𝑘2 + 2k) + 1. 

By the definition of an odd integer, we can conclude that 𝑛2 is an odd 

integer (it is one more than twice an integer). Consequently, we have 

proved that if n is an odd integer, then 𝑛2 is an odd integer. 

Give a direct proof that if m and n are both perfect squares, then nm is 

also a perfect square.

(An integer a is a perfect square if there is an integer b such that a = 𝑏2) 

Example

we assume that m and n are both perfect squares By the definition of a 

perfect square, it follows that there are integers s and t such that m = 𝑠2

and n = 𝑡2by substituting 𝑠2 for m and 𝑡2 for n into mn

This tells us that

Solution
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mn = 𝑠2 𝑡2 = (ss)(t t ) = (st )(st ) = (𝑠𝑡)2 , 

using commutativity and associativity of multiplication. 

it follows that mn is also a perfect square, because it is the square of st, 

which is an integer. 

Example

Solution

Prove that the sum of two rational numbers is rational. 

Definition: The real number r is rational if there exist integers p and q

where  q≠0 such that r = p/q

Assume r and s are two rational numbers. Then there must be integers 

p, q and also t, u  such that

where v = pu + qt 
w = qu ≠ 0

Thus the sum is rational. 
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2. Proof by Contraposition

Proofs by contraposition make use of the fact that the conditional 

statement p → q is equivalent to its contrapositive, ¬q →¬p. 

We take ¬q as a premise, and using axioms, definitions, and previously 

proven theorems, together with rules of inference, we show that

¬p must follow. 

sometimes called an indirect proof method

Example

Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Solution

To construct a direct proof, we first assume that 3n + 2 is an odd integer. 

This means that 3n + 2 = 2k + 1 for some integer k. Can we use this fact  

show that n is odd? We see that 3n + 1 = 2k, but there does not seem to be 

any direct way to conclude that n is odd. 
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The first step in a proof by contraposition is to  Assume n is even (not 

odd) . So, n = 2k for some integer k. Thus 

3n + 2 = 3(2k) + 2 =6k +2 = 2(3k + 1) = 2j for j = 3k +1

Therefore 3n + 2 is even (not odd). 

Since we have shown ¬q → ¬p ,  p → q  must hold as well. 

If n is an integer and 3n + 2 is odd (not even) , then n is odd (not even).

2. Prove that for an integer n, if 𝑛2 is odd, then n is odd. 

Quiz (1)
1. Prove that if n = ab, where a and b are positive integers, then

𝑎 ≤ 𝑛 or 𝑎 ≤ 𝑛

3. Show that the proposition P(0) is true, where P(n) is :

“If  n >1,  then 𝑛2 > n” 

and the domain consists of all integers.

4.  Let P(n) be “If a and b are positive integers with a ≥ b, then 𝑎𝑛 ≥ 𝑏𝑛” 

where the domain consists of all nonnegative integers. Show that P(0) is 

true.
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3. Proofs by Contradiction

To prove  p, assume  ¬p  and derive a contradiction such as  p ∧ ¬p. 

Since we have shown that ¬p →F is true , it follows that the contrapositive  

T→p also holds. Proofs of this type are called proofs by contradiction. 

Because a proof by contradiction does not prove a result directly, it is 

another type of indirect proof. 

Prove that 2 is irrational by giving a proof by contradiction.

Example

Solution

Suppose 2 is rational. Then there exists integers a and b with 2
= a/b, where b≠ 0 and a and b have no common factors . Then

Therefore 𝑎2 must be even. If 𝑎2 is even then a must be even 

(an exercise). Since a is even, a = 2c  for some integer c. Thus,
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Therefore b2 is even.  Again then b must be even as well.

But then 2 must divide both a and b. This contradicts our assumption 

that a and b have no common factors. We have proved by contradiction  

that our initial assumption must be false  and  therefore 2 is  irrational.

PROOFS OF EQUIVALENCE To prove a theorem that is a biconditional 

statement, that is, a statement of the form p ↔ q, we show that p → q 

and q → p are both true. The validity of this approach is based on the 

tautology:

(p ↔ q) ↔ (p → q) ∧ (q → p).

Prove the theorem “If n is an integer, then n is odd if and only if 𝑛2 is odd.”

Example
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COUNTEREXAMPLES In Section 1.4 we stated that to show that a 

statement of the form ∀xP(x) is false, we need only find a counterexample, 

that is, an example x for which P(x) is false. 

Show that the statement “Every positive integer is the sum of the 

squares of two integers” is false.

Example

Solution

we look for a counterexample, which is a particular integer that is 

not the sum of the squares of two integers. 

note that the only perfect squares not exceeding 3 are 0

02 = 0 and 12 = 1. Furthermore, there is no way to get 3 as the 

sum of two terms each of which is 0 or 1. 

Consequently, we have shown that “Every positive integer is the 

sum of the squares of two integers” is false.
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Mistakes in Proofs

Each step of a mathematical proof needs to be correct and the conclusion 

needs to follow logically from the steps that precede it. 

Example

Solution

We use these steps, where a and b are two equal positive integers.

Every step is valid except for one, step 5 where we divided both sides by 

a - b. The error is that a - b equals zero; division of both sides of an equation 

by the same quantity is valid as long as this quantity is not zero.
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Ch. 5 . Induction and Recursion 

In general, mathematical induction can be used to prove statements 

that assert that P(n) is true for all positive integers n, where P(n) is a 

propositional function, we complete two steps:

BASIS STEP: 

We verify that P (1) is true.

INDUCTIVE STEP:

We show that the conditional statement

P (k) → P (k + 1) is true for all positive integers k.

• Mathematical Induction 

Proof methods: direct proof, proof by contraposition, proof by 

contradiction, disproof by counterexample and mathematical 

induction 
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To complete the inductive step of a proof using the principle of mathematical 

induction, we assume that P(k)is true for an arbitrary positive integer k and 

show that under this assumption, P(k+ 1) must also be true. The assumption 

that P(k)is true is called the inductive hypothesis.

❑ Expressed as a rule of inference, this proof technique can be stated as

(P (1) ∧ ∀ k(P (k) → P (k + 1))) → ∀ nP (n),

when the domain is the set of positive integers. 
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To prove that ∀nP(n), where n∈Z⁺ and P(n) is a propositional function, we 

complete two steps:

1- Basis step: Verify P(1) is true

2-Inductive hypothesis: Assume P(k) is true

3-Inductive step: Show P(k)➝P(k+1) is true for arbitrary k∈Z⁺

When we use mathematical induction to prove a theorem, we first 

show that P (1) is true. Then we know that P (2) is true, because P (1) 

implies P (2). Further, we know that P (3) is true, because P (2) 

implies P (3). Continuing along these lines, we see that P (n) is true 

for every positive integer n.
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Example
Show that if n is a positive integer, then

Solution

Let P (n) be the proposition that the sum of the first n positive integers, 

1 + 2 + · · · n = n(n + 1)/2 , is n(n + 1)/2. We must do two things to 

prove that P (n) is true for n = 1, 2, 3, . . . . Namely, we must show that 

P (1) is true and that the conditional statement P (k) implies P (k + 1)

is true for k = 1, 2, 3, . . . .

BASIS STEP: P (1) is true, because 1 = 1(1 + 1 )/2. (The left-hand side 

of this equation is 1 because 1 is the sum of the first positive integer. The 

right-hand side is found by substituting 1 for n in n(n + 1)/2.)

INDUCTIVE STEP: For the inductive hypothesis we assume that P (k) 

holds for an arbitrary positive integer k. That is, we assume that

1 + 2 + · · · + k = k(k + 1 )/2

Under this assumption, it must be shown that P (k + 1) is true, 

namely, that 
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is also true. When we add k + 1 to both sides of the equation 

in P (k), we obtain

This last equation shows that P (k + 1) is true under the assumption 

that P (k) is true. This completes the inductive step. 

We have completed the basis step and the inductive step, so by 

mathematical induction we know that P (n) is true for all 

positive integers n. That is, we have proven that 1 + 2 + · · · + n 

= n(n + 1)/2 for all positive integers n
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that the sum of the first n positive odd integers is 𝑛2

Example

Solution

Let P(n) denote the proposition that the sum of the first n odd 

positive integers is 𝑛2. that is 

1 + 3 + 5 +···+(2n - 1) = 𝑛2

We now attempt to complete these two steps.

BASIS STEP: P(1) states that the sum of the first one odd positive integer is 12. 

This is true because the sum of the first odd positive integer is 1. The basis step 

is complete.

INDUCTIVE STEP: To complete the inductive step we must show that the 

proposition P(k) → P(k+ 1) is true for every positive integer k. To do this, we 

first assume the inductive hypothesis. The inductive hypothesis is the statement 

that P(k) is true for an arbitrary positive integer k, that is,

1 + 3 + 5 +···+(2k - 1) = 𝑘2

Note that P(k+ 1) is the statement that



Dr. Mohamed Abdel-Aal
Discrete Mathematics 

Lecture 3

1 + 3 + 5 +···+(2k - 1) + (2k + 1) = (k + 1) 2

So, assuming that P(k) is true, it follows that

This shows that P(k+ 1) follows from P(k). Note that we used the 

inductive hypothesis P(k) in the second equality to replace the sum of 

the first k odd positive integers by 𝑘2 .

we have shown that P(1) is true and the conditional statement P(k) 

→ P(k+ 1) is true for all positive integers k. Consequently, by the 

principle of mathematical induction we can conclude that P(n) is 

true for all positive integers n. 
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Use mathematical induction to show that

Example

Solution

for all nonnegative integers n.

Let P(n) be the proposition that

for the integer n. 

BASIS STEP: P(0) is true because 20 = 1 = 21-1. This completes 

the basis step.

INDUCTIVE STEP: For the inductive hypothesis, we assume that 

P(k)is true for an arbitrary nonnegative integer k. That is, we 

assume that

To carry out the inductive step using this assumption, we must 

show that when we assume that P(k) is true, then P(k+ 1) is also 

true. That is, we must show that
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assuming the inductive hypothesis P(k). Under the assumption of P(k), 

we see that

Note that we used the inductive hypothesis in the second equation in 

this string of equalities to replace 1 + 2 + 22 +···+ 2𝑘 by 2𝑘+1 - 1. 

We have completed the inductive step.
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Sums of Geometric Progressions Use mathematical induction to prove 

this formula for the sum of a finite number of terms of a geometric 

progression with initial term a and common ratio r:

where n is a nonnegative integer.

Example

Solution

BASIS STEP: P(0) is true, because

Inductive hypothesis: Assume P(k) is true for 

arbitrary k∈N, a+ar+ar2.... +ark = (ark+1 -a)/(r-1)

To complete the inductive step we must show that if P(k)is true, then 

P(k+ 1) is also true. To show that this is the case, we first add a 𝑟k+1 to 

both sides of the equality asserted by P(k).We find that
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Rewriting the right-hand side of this equation shows that

Combining these last two equations gives

This shows that if the inductive hypothesis P(k) is true, then P(k+ 1) 

must also be true. This completes the inductive argument.
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PROVING INEQUALITIES 

Example

Solution

Use mathematical induction to prove the inequality

n < 2n for all positive integers n.

Let P(n) be the proposition that n < 2n

BASIS STEP: P(1) is true, because 1 < 21=2. This completes the basis step. 

INDUCTIVE STEP: We first assume the inductive hypothesis that P(k)is true 

for an arbitrary positive integer k. That is, the inductive hypothesis P(k)is the 

statement that k < 2k To complete the inductive step, we need to show that if 

P(k) is true, then P(k+ 1), which is the statement that k +1 < 2k+1 , is true. we 

first add 1 to both sides of k < 2k, and then note that 1 < 2k . This tells us that

This shows that P(k+ 1) is true, namely, that k +1 < 2k+1, based on the 

assumption that P(k) is true. The induction step is complete.
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Let P(n) be the proposition that 2n < 𝑛!

Use mathematical induction to prove that 2n < 𝑛! for every integer n

with n ≥ 4. (Note that this inequality is false for n = 1, 2, and 3.)

Example

Solution

BASIS STEP: To prove the inequality for n = 4 requires that the basis 

step be P(4). Note that P(4) is true, because 24 = 16 < 24 = 4!.

INDUCTIVESTEP: For the inductive step, we assume that P(k) is true 

for an arbitrary integer k with k ≥ 4. That is, we assume that 2k < 𝑘!
for the positive integer k with k ≥ 4. We must show that under this 

hypothesis, P(k+ 1) is also true. 

This shows that P(k+ 1) is true when P(k) is true. This completes the 

inductive step of the proof.
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Use mathematical induction to prove that 𝑛3 − 𝑛 is divisible by 3

whenever n is a positive integer. 

Example

Solution

let P(n) denote the proposition: “𝑛3 − 𝑛 is divisible by 3.”

BASIS STEP: The statement P(1) is true because 13 − 1 = 0 is divisible by 3. 

This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is 

true; that is, we assume that 𝑘3 − 𝑘 is divisible by 3 for an arbitrary 

positive integer k. 

To complete the inductive step, we must show that when we assume 

the inductive hypothesis, it follows that P(k+ 1), the statement that 

(𝑘 + 1)3−(𝑘 + 1) is divisible by 3, is also true. 

Using the inductive hypothesis, we conclude that the first term 𝑘3 − 𝑘
is divisible by 3. The second term is divisible by 3 because it is 3 times 

an integer. 
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• Strong Induction

Show that if n is an integer greater than 1, then n can be 

written as the product of primes

Example

Solution

Let P(n) be the proposition that n can be written as the product of 

primes
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P(2) is true, because 2 can be written as the product of one prime, itself. 

(Note that P(2) is the first case we need to establish.)

INDUCTIVE STEP: The inductive hypothesis is the assumption that 

P(j) is true for all integers j with 2 ≤ j ≤ k, that is, the assumption that j

can be written as the product of primes whenever j is a positive integer 

at least 2 and not exceeding k. To complete the inductive step,

it must be shown that P(k+ 1) is true under this assumption, that is, that 

k + 1 is the product of primes.

There are two cases to consider, namely, when k + 1 is prime and when 

k + 1 is composite.  If k + 1 is prime, we immediately see that P(k+ 1) is 

true. Otherwise, k + 1 is composite and can be written as the product of 

two positive integers a and b with 2 ≤ a ≤ b < k+ 1. Because both a and 

b are integers at least 2 and not exceeding k, we can use the inductive 

hypothesis to write both a and b as the product of primes. Thus, if k + 1 

is composite, it can be written as the product of primes, namely, those 

primes in the factorization of a and those in the factorization of b.
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Quiz (2)

1. Use mathematical induction to prove that 𝑥2𝑛 − 𝑦2𝑛is 

divisible by x+y whenever n is a positive integer. 

2. Use mathematical induction to prove that 3n < 𝑛! for every integer 

n with n ≥ 7. (Note that this inequality is false for n = 1, 2, …and 6.)


